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AIC and relatives  

Basic definitions and formulae  
K = number of parameters estimated from the data, n = sample size, ℒ = maximised likelihood. 

Akaike’s Information Criterion, AIC:  

𝐴𝐴𝐴𝐴𝐴𝐴 =  −2 log(ℒ) + 2𝐾𝐾 

The model with the lowest AIC should give the best predictions when applied to a fresh data set; it gives approximately 
the same results as cross-validation. That we are actually evaluating our model based on the same data set means that we 
tend to be over-optimistic about our predictive ability, and the second term tries to correct for this “optimism”.  

AICc: AIC is an approximation which works fine if n is large, much larger than K. A better approximation is this:  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴 +  
2𝐾𝐾(𝐾𝐾 + 1)
𝑛𝑛 − 𝐾𝐾 − 1

 

The extra term is known as the “small sample correction”, but AICc is better than AIC even for large samples. For some 
models it’s not clear what is n: for an occupancy model, should this be the number of sites or the total number of visits to 
sites?  

AICc can also be expressed as:  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = −2 log(ℒ) +  
2𝐾𝐾𝑛𝑛

𝑛𝑛 − 𝐾𝐾 − 1
 

 
QAIC and QAICc: Binomial and Poisson distributions do not have a separate parameter for spread (“dispersion”); this 
is theoretically determined by other parameters. In practice, the spread is often greater than it should be, and an 
overdispersion parameter (usually named �̂�𝐴, “c-hat”, by biologists) is estimated and used to correct variances and 
confidence intervals. The correction must also be applied to AIC, resulting in a Quasi-AIC:  

𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴 =  
−2 log(ℒ)

�̂�𝐴
+ 2𝐾𝐾 

where the number of parameters, K, must include �̂�𝐴. And there’s a small-sample-correction version too:  

𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴 + 
2𝐾𝐾(𝐾𝐾 + 1)
𝑛𝑛 − 𝐾𝐾 − 1

 
 

BIC: The Bayesian or Schwarz Information Criterion is:  

𝐵𝐵𝐴𝐴𝐴𝐴 = −2log(ℒ) + log(𝑛𝑛)𝐾𝐾 

This implies a greater penalty for extra parameters (unless n < 8), and the BIC-lowest models are simpler than 
AIC-lowest models. There’s nothing Bayesian about the calculation of BIC, but it does tend to give the same results as 
model selection using Bayes factors.  

CAIC: You may also come across something called the “Consistent AIC” (see Bozdogan (1987), Anderson et al 
(1998)), which is:  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = −2log(ℒ) + (log(𝑛𝑛) + 1)𝐾𝐾 
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Values derived from information criteria  
In this section we’ll refer to AIC, but the exact same calculations can be done based on any of the other information 
criteria.  

Delta AIC, Δ  
The values of AIC are not important, it’s the differences which matter: 𝛥𝛥𝑖𝑖  =  𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 −  𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝑖𝑖𝑛𝑛 . Two points to bear in 
mind:  

• Adding a totally uninformative parameter to a model (eg, rolling a die), will increase AIC by < 2 units. If an extra 
parameter is providing useful information, the model will have a lower AIC than the model without it. Such models are 
not supported (B&A p131, Arnold 2010).  
• If Δ is small, there is uncertainty about which model is best (if you remember the “which bag” activity, one white 
stone changes the AIC by 0.2). If the difference in AIC is < 2, it’s not clear which model is the best, but with a difference 
of > 10, the less-good model can be discarded (B&A p70). 
 
Model likelihood  

You can think of the model likelihood as an adjusted version of the maximised likelihood, ℒ, which has been adjusted to 
allow for the number of parameters in the model and standardised so that the best model has likelihood = 1. It is 
calculated by “undoing” the -2log() operation, so:  

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑖𝑖𝑙𝑙𝑚𝑚𝑚𝑚𝑖𝑖ℎ𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑚𝑚−
1
2Δ𝑖𝑖  

 
You can use ratios of model likelihoods to compare two models; the comparison does not depend on which other models 
are in the set.  

Model weights or Akaike weights  

Model weights are in the same proportions as the model likelihoods, but all the weights in the set add up to 1. So:  
model weight = model likelihood / sum of likelihoods of all the models in the set.  

Model weights do depend on all the other models in the set. Beware of model redundancy, ie, having 2 models in the set 
which are equivalent, even if they appear to be parameterised differently (redundant models will have identical values of 
ℒ). 

The model weight can be regarded as the probability that the model is actually the best predictor in the set (B&A 
pp75-77). This is a subjective (ie, Bayesian) probability, and is the posterior probability of being the best predicting 
model based on a “savvy” prior which favours models with fewer parameters. 

Model averaging  
Often there is uncertainty as to which model to use for prediction: Δ is small or model weights are similar. The strategy 
then is to calculate predictions from each of the plausible models and produce weighted averages of the predictions, 
using model weights. 

Do not try to obtain model-averaged values of the parameters, as they will have different interpretations in different 
models. 
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An example 
 

The table right is from Gray (2012) and shows the results of 
occupancy modelling of camera trap data for large mammals in 
Cambodia. 

For each of the four species, he fitted models with and without a 
habitat covariate for occupancy. He reports AICc and model 
weights for each, and gives estimates and standard errors of 
probability of occupancy (ψ) and probability of detection (p) 
after model averaging. 

 

Bayesian model-selection criteria  
In Bayesian analysis, we don’t calculate a maximised 
likelihood, ℒ, when estimating parameters. Instead we can use 
the “posterior predictive density”, based on the probability of 
observing the data given the posterior distributions of the 
parameters. To this is added a term representing our “optimism”. The calculations are rather involved, but there are 3 
options, all of which work like AIC, ie, lowest is best.  

• DIC, deviance information criterion, included in the output of many packages based on BUGS or JAGS; not valid for 
hierarchical models, which include most of our ecological examples (occupancy, mark-recapture, etc).  
• WAIC, widely-applicable information criterion or Watanabe-Akaike information criterion; valid for hierarchical 
models provided observations are independent; cannot be used for models with spatial or temporal autocorrelation.  
• posterior predictive loss; valid when observations are not independent.  
 
See Hooten & Hobbs (2015) for examples and a discussion of these criteria.  
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